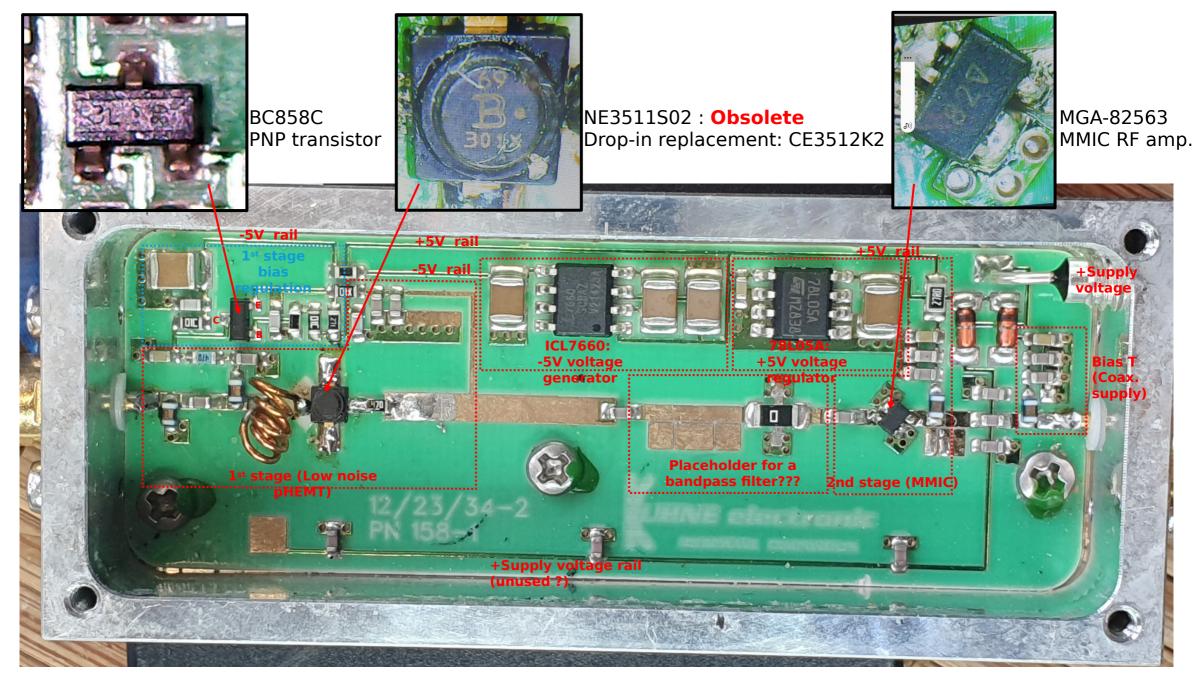
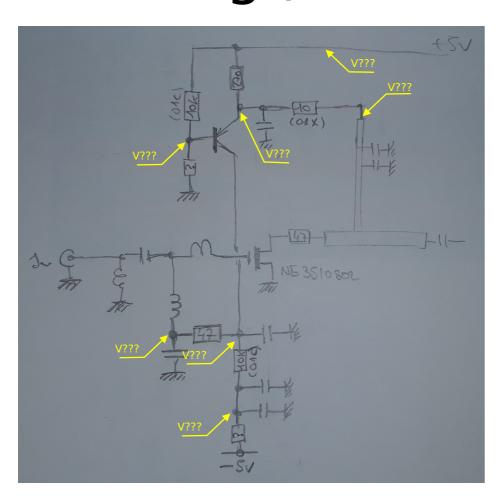
Kuhne MKU LNA 131 AH F5KSE repair attempt

MKU LNA 131 AH specification

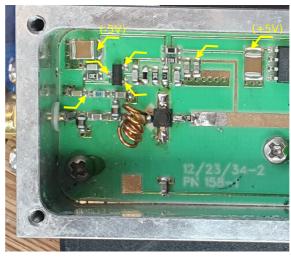

Super Low Noise HEMT Preamplifier for DX and EME

1296 MHz

net: 289,08 € 344,00 €incl. 19% Vat. plus shipping
Lead time on request


ADD TO BASKET

Technical specifications Description Features Important notes Downloads	Accessories
Frequency range	12461346 MHz
Noise figure @ 18 ℃	0.4 dB +/- 0,05
Gain	typ. 20 dB
Maximum input power	1 mW
Supply voltage	+9 15 V DC
Current consumption	typ. 15 mA
Operating case temp. range	-20 +65°C
Input connector / impedance	N-male, 50 ohms
Output connector / impedance	N-female, 50 ohms
Case	milled aluminium
Dimensions (mm)	50 x 30 x 22
Weight	100 g (typ.)



Pictures: courtesy F6IJI

Partial schematics (1st stage and bias reg.)

BC558C (PNP transistor) is operating as a current source, setting current in the 270Ω resistor (and therefore in NE3510 pHEMT drain) based on its base voltage: Id = (Vbase-0.7V) / 270Ω voltage Vbase is set by base resistive divider (unknown ratio!) To regulate its emitter current, PNP will adjust its collector voltage and therefore pHEMT gate voltage to the right voltage (close loop operation).

NE3511S02 equivalent

CEL California Eastern Laboratories

To: ALL FIELD

Date: 11/10/2016

Subject: PRODUCT CHANGE NOTICE

Renesas has decided to withdraw from the Microwave Semiconductor Device business as described in their press release from August 2, 2016 (https://www.renesas.com/en-hq/about/press-center/news/2016/news20160802.html).

The parts affected include all the RF and Microwave devices offered through CEL.

There are CEL direct drop-in replacement parts to many of the Renesas Microwave devices that are being discontinued including all RF Switches and most of the Low Noise GaAs FETs (pHEMTs) - see specific part number replacements in the table below.

The complete End of Life (EOL) list of parts is shown below.

PCN#	Release Date dd-mmm-yy	Renesas EOL Part Number	CEL <mark>Drop-In</mark> Replacement Part	Last Time Buy Forecast Date	Last Time Buy Date	Last Time Ship Date
RFL20160805D	5-Aug-16	NE3210S01	CE3512K2	15-Dec-16	1-Jun-17	1-Jun-18
RFL20160805D	5-Aug-16	NE3210S01-T1B	CE3512K2-C1	15-Dec-16	1-Jun-17	1-Jun-18
RFL20160805D	5-Aug-16	NE3503M04-A	CE3514M4	15-Dec-16	1-Jun-17	1-Jun-18
RFL20160805D	5-Aug-16	NE3503M04-T2-A	CE3514M4-C2	15-Dec-16	1-Jun-17	1-Jun-18
RFL20160805D	5-Aug-16	NE3503M04-T2B-A	CE3514M4-C2	15-Dec-16	1-Jun-17	1-Jun-18
RFL20160805D	5-Aug-16	NE3508M04-A	NA	15-Dec-16	1-Jun-17	1-Jun-18
RFL20160805D	5-Aug-16	NE3508M04-T2-A	NA	15-Dec-16	1-Jun-17	1-Jun-18
RFL20160805D	5-Aug-16	NE3509M04-A	NA	15-Dec-16	1-Jun-17	1-Jun-18
RFL20160805D	5-Aug-16	NE3509M04-T2-A	NA	15-Dec-16	1-Jun-17	1-Jun-18
RFL20160805D	5-Aug-16	NE3510M04-A	NA	15-Dec-16	1-Jun-17	1-Jun-18
RFL20160805D	5-Aug-16	NE3510M04-T2-A	NA	15-Dec-16	1-Jun-17	1-Jun-18
RFL20160805D	5-Aug-16	NE3511S02-A	CE3512K2	15-Dec-16	1-Jun-17	1-Jun-18
RFL20160805D	5-Aug-16	NE3511S02-T1C-A	CE3512K2-C1	15-Dec-16	1-Jun-17	1-Jun-18
RFL20160805D	5-Aug-16	NE3512S02-A	CE3512K2	15-Dec-16	1-Jun-17	1-Jun-18
RFL20160805D	5-Aug-16	NE3512S02-T1C-A	CE3512K2-C1	15-Dec-16	1-Jun-17	1-Jun-18
RFL20160805D	5-Aug-16	NE3512S02-T1D-A	CE3512K2-C1	15-Dec-16	1-Jun-17	1-Jun-18
DEI 20160805D	5-Aug-16	NF2512MOA_A	CE351/M/	15-Dec-16	1_lun_17	1-lun-19

NE3511S02 vs. CE3512K2

DATA SHEET

HETERO JUNCTION FIELD EFFECT TRANSISTOR

NE3511S02

X TO Ku BAND SUPER LOW NOISE AMPLIFIER N-CHANNEL HJ-FET

FEATURES

- Super low noise figure and high associated gain $NF=0.30\ dB\ TYP.,\ G_a=13.5\ dB\ TYP.\ @\ f=12\ GHz$
- · Micro-X plastic (S02) package

APPLICATIONS

- · X to Ku-band DBS LNB
- . Other X to Ku-band communication systems

ORDERING INFORMATION

Part Number	Order Number	Package	Quantity	Marking	Supplying Form
NE3511S02-T1C	NE3511S02-T1C-A	S02 (Pb-Free)	2 kpcs/reel	В	8 mm wide embossed taping
NE3511S02-T1D	NE3511S02-T1D-A		10 kpcs/reel		Pin 4 (Gate) faces the perforation side of the tape

Remark To order evaluation samples, contact your nearby sales office.

Part number for sample order: NE3511S02

ABSOLUTE MAXIMUM RATINGS (TA = +25°C)

Parameter	Symbol	Ratings	Unit
Drain to Source Voltage	Vos	4	٧
Gate to Source Voltage	Vgs	-3	٧
Drain Current	lo	loss	mA
Gate Current	lg	100	μΑ
Total Power Dissipation	Ptot Note	165	mW
Channel Temperature	Tah	+125	°C
Storage Temperature	Tstg	-65 to +125	°C

Note Mounted on 1.08 cm2 × 1.0 mm (t) glass epoxy PCB

RF Low Noise FET CE3512K2

12 GHz Super Low Noise FET in Hollow Plastic PKG

DESCRIPTION

- · Super Low Noise and High Gain
- Hollow (Air Cavity) Plastic package

FEATURES

 Super Low noise figure and high associated gain: NF = 0.30 dB TYP., Ga = 13.7 dB TYP.
 @V_{DS} = 2 V, I_D = 10 mA, f = 12 GHz

ABSOLUTE MAXIMUM RATINGS

(TA = +25°C, unless otherwise specified)			
Parameter	Symbol	Rating	Unit
Drain to Source Voltage	V _{DS}	4.0	V
Gate to Source Voltage	V _{GS}	-3.0	V
Drain Current	I _D	I _{DSS}	mA
Gate Current	lg	80	μА
Total Power Dissipation	P _{tot}	125	mW
Channel Temperature	T _{ch}	+150	°C
Storage Temperature	T _{stg}	-55 to +125	°C
Operation Temperature	Top	-55 to +125Note	°C

Note Refer to Total Power Dissipation vs. Ambient Temperature graph on page 4

PACKAGE

Micro-X plastic package

APPLICATIONS

 KU Band LNB (Low Noise Block) Suitable for 1st Stage

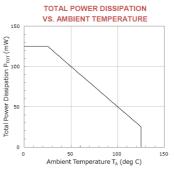
ORDERING INFORMATION

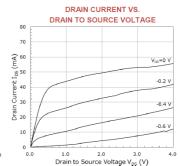
Part Number	Order Number	Package	Marking	Description
CE3512K2	CE3512K2-C1	Micro-X plastic package	C5	Embossed tape 8 mm wide Pin 4 (Gate) faces the perforation side of the tape MOQ 10 kpcs/reel

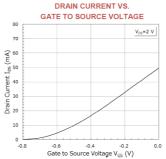
NE3511S02 vs. CE3512K2

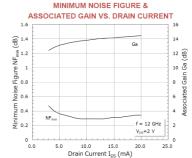
NEC NE3511S02 TYPICAL CHARACTERISTICS (Ta = +25°C, unless otherwise specified) TOTAL POWER DISSIPATION DRAIN CURRENT vs. vs. AMBIENT TEMPERATURE DRAIN TO SOURCE VOLTAGE Mounted on Glass Epoxy PCE Ambient Temperature TA (°C) Drain to Source Voltage Vos (V) DRAIN CURRENT vs. GATE TO SOURCE VOLTAGE Gate to Source Voltage Vgs (V) MINIMUM NOISE FIGURE, MINIMUM NOISE FIGURE. ASSOCIATED GAIN vs. FREQUENCY ASSOCIATED GAIN vs. DRAIN CURRENT

Remark The graphs indicate nominal characteristics.

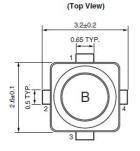

@ 1.2GHz: Gain ~ 22dB NF ~0.25dB Drain Current Io (mA)

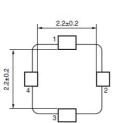



CE3512K2

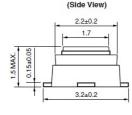

TYPICAL CHARACTERISTICS:

(TA=+25°C, unless otherwise specified)




NE3511S02 vs. CE3512K2

NEC NE3511S02

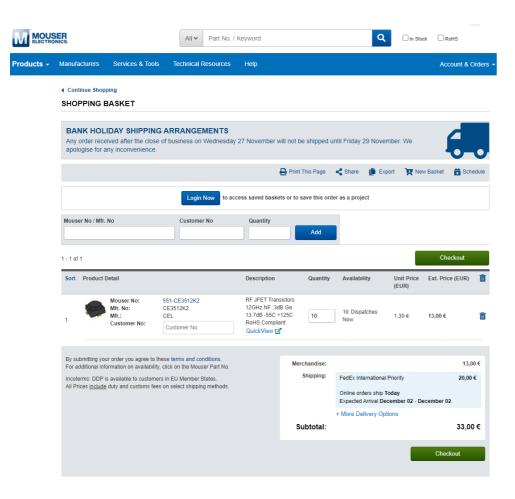

PACKAGE DIMENSIONS

S02 (UNIT: mm)

(Bottom View)

PIN CONNECTIONS

- Source
 Drain
- 3. Source
- 4. Gate


CE3512K2

PIN CONFIGURATION AND INTERNAL BLOCK DIAGRAM

Pin No.	Pin Name
1	Source
2	Drain
3	Source
4	Gate

NE3511S02/CE3512K2 availability

NE3511S02 is not available anymore (apart from some not-so-reliable suppliers in china). CE3512K2 is hard to find but available at a few "serious" places:

- Mouser
- Digikey
- ...

MGA-82563

MGA-82563

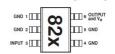
0.1 - 6 GHz 3 V, 17 dBm Amplifier

Data Sheet

Description

Avago's MGA-82563 is an economical, easy-to-use GaAs MMIC amplifier that offers excellent power and low noise figure for applications from 0.1 to 6 GHz. Packaged in an ultra-miniature SOT-363 package, it requires half the board space of a SOT-143 package.

The input and output of the amplifier are matched to 50Ω (below 2:1 VSWR) across the entire bandwidth, eliminating the expense of external matching. The amplifier allows a wide dynamic range by offering a 2.2 dB NF coupled with a +31 dBm Output IP.,


The circuit uses state-of-the-art PHEMT technology with proven reliability. On-chip bias circuitry allows operation from a single +3 V power supply, while resistive feedback ensures stability (K>1) over all frequencies and temperatures.

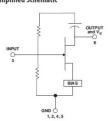
Surface Mount Package

SOT-363 (SC-70)

Pin Connections and Package Marking

Note: Package marking provides orientation and identification. "82" = Device Code

"x" = Date code character identifies month of manufacture


Features

- Lead-free Option Available
- +17.3 dBm P_{1 dB} at 2.0 GHz +20 dBm P.,, at 2.0 GHz
- Single +3V Supply
- 2.2 dB Noise Figure at 2.0 GHz
- 13.2 dB Gain at 2.0 GHz
- Ultra-miniature Package
- · Unconditionally Stable

Applications

- · Buffer or Driver Amp for PCS,
- PHS, ISM, SATCOM and WLL Applications
- High Dynamic Range LNA

Simplified Schematic

Attention: Observe precautions for handling electrostatic sensitive devices ESD Human Body Model (Class 0) Refer to Avago Application Note A004R: Electrostatic Discharge Damage and Control.

MGA-82563 Absolute Maximum Ratings

Symbol	Parameter	Units	Absolute Maximum ^[1]
V _d	Device Voltage, RF Output to Ground	V	5.0
V_{gd}	Device Voltage, Gate to Drain	V	-6.0
V _{in}	Range of RF Input Voltage to Ground	V	+0.5 to -1.0
P _{In}	CW RF Input Power	dBm	+13
T _{ch}	Channel Temperature	°C	165
T _{STG}	Storage Temperature	°C	-65 to 150

@ 1.2GHz:

NF ~2.2dB

Gain in 50 Ω system Gain ~ 14.3dB f=0.5 GHz

MGA-82563 Electrical Specifications, $T_c = 25^{\circ}C$, $Z_0 = 50 \,\Omega$, $V_4 = 3 \,V$

Output Power at 1 dB Gain Compression

Output Third Order Intercept Point

Input VSWR

Output VSWR

Device Current

Parameters and Test Conditions

Noise Figure in test circuit^[1]

Noise Figure in 50 Ω system

Gain in test circuit[1]

NF.

Thermal Resistance [2] $\theta_{+-} = 180^{\circ} \text{C/W}$

1. Permanent damage may occur if any of these limits are exceeded.

> Typ. Max.

13.2 15

2.2 2.9

2.3

2.2

2.2

2.2

2.4

2.7

14.7

14.5

13.5

12.1

10.7

8.8

17.4 17.5

17.3

17.1

17.0

16.8

+31

1.8:1

1.2:1

84

0.35

0.20

0.20

0.35

0.54

1.0

2. T_c = 25°C (T_c is defined to be the temperature at the top of the package.)

MGA-82563 Typical Performance, $T_c = 25^{\circ} \text{ C}$, $V_d = 3 \text{ V}$

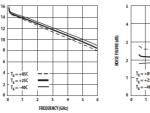


Figure 1. 50 Power Gain vs. Frequency and

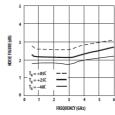


Figure 2. Noise Figure (into 50) vs. Frequency and

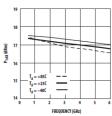


Figure 3. Output Power @ 1 dB Gain Compression vs.

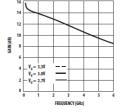
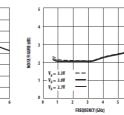



Figure 4. 50 Power Gain vs. Frequency and Voltage.

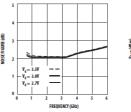


Figure 5. Noise Figure (into 50) vs. Frequency and Voltage.

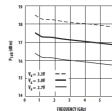


Figure 6. Output Power @ 1 dB Gain Compression vs Frequency and Voltage.

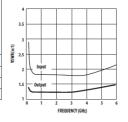


Figure 7. Input and Output VSWR into 50 vs.

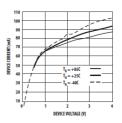


Figure 8. Device Current vs. Voltage and

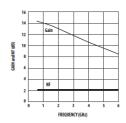


Figure 9. Minimum Noise Figure and Associated Gain

IP,

VSWR.

VSWR...

- 1. Guaranteed specifications are 100% tested in the circuit in Figure 10 in the Applications Information section.
- 2. Standard deviation number is based on measurement of at least 500 parts from three non-consecutive wafer lots during the initial characterization of this product, and is intended to be used as an estimate for distribution of the typical specification.

 $f = 2.0 \, \text{GHz}$

f = 2.0 GHz

f = 0.5 GHz

 $f = 1.0 \, \text{GHz}$

 $f = 2.0 \, \text{GHz}$

 $f = 3.0 \, GH_2$

f = 6.0 GHz

f = 1.0 GHz

 $f = 2.0 \, \text{GHz}$

 $f = 3.0 \, \text{GHz}$

f = 4.0 GHz

 $f = 6.0 \, \text{GHz}$

f = 0.5 GHz

 $f = 1.0 \, \text{GHz}$ $f = 2.0 \, \text{GHz}$

f = 3.0 GHz

 $f = 4.0 \, \text{GHz}$

 $f = 6.0 \, \text{GHz}$

f = 2.0 GHz

f = 0.2-5.0 GHz

f = 0.2-5.0 GHz